Chapter 8 - Differential Equations

Chapter 8 - Differential Equations

AP Exam Weight: 15-25% | Multiple Choice: 6-10 questions | Free Response: Usually 1 full question

šŸ“š Table of Contents

  1. [Slope Fields]
  2. [Separable Equations]
  3. [Logistic Growth]
  4. [Euler's Method]
  5. [Applications]

Basic Concepts šŸ“ˆ

Key Terms

  • Order: Highest derivative
  • Linear vs. Nonlinear
  • Initial value problem (IVP)
  • General solution

Common Forms

  1. Separable: dydx=f(x)g(y)\frac{dy}{dx} = f(x)g(y)
  2. Linear: dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x)
  3. Logistic: dydt=ky(1āˆ’yM)\frac{dy}{dt} = ky(1-\frac{y}{M})

Solution Methods šŸ”§

Separation of Variables

  1. Separate y and x terms
  2. Integrate both sides
  3. Solve for y
  4. Apply initial conditions

Integration

y=āˆ«f(x)dx+Cy = \int f(x)dx + C

Euler's Method

yn+1=yn+f(xn,yn)Ī”xy_{n+1} = y_n + f(x_n,y_n)\Delta x

Applications šŸŽÆ

Growth/Decay

dydt=ky\frac{dy}{dt} = ky

  • Solution: y=Cekty = Ce^{kt}

Logistic Growth

dydt=ky(1āˆ’yM)\frac{dy}{dt} = ky(1-\frac{y}{M})

  • Solution: y=M1+Ceāˆ’kty = \frac{M}{1 + Ce^{-kt}}

Newton's Law of Cooling

dTdt=k(Tāˆ’Ts)\frac{dT}{dt} = k(T-T_s)

  • Solution: T=Ts+(T0āˆ’Ts)ektT = T_s + (T_0-T_s)e^{kt}

1. Slope Fields šŸ“Š

Understanding Slope Fields

A visual representation of differential equations. Think of it as:

  • Direction field for solutions
  • Map of solution curves
  • Tangent line indicators
  • Solution path guide

Creating Slope Fields

Process

  1. Identify dy/dx:

    • Write equation in standard form
    • Isolate derivative
    • Understand variables
    • Note special cases
  2. Plot Slopes:

    • Choose grid points
    • Calculate slope at each point
    • Draw short line segments
    • Maintain consistent length
  3. Analyze Pattern:

    • Look for symmetry
    • Find equilibrium solutions
    • Note key behaviors
    • Identify solution types

Example Walkthrough - Slope Fields

For dydx=xāˆ’y\frac{dy}{dx} = x - y

  1. Create grid:

    • Choose points (-2,-2) to (2,2)
    • Mark intersections
    • Consider scale
    • Note key points
  2. Calculate slopes:

    • At (0,0): slope = 0
    • At (1,0): slope = 1
    • At (0,1): slope = -1
    • Pattern emerges
  3. Draw segments:

    • Use consistent length
    • Show direction
    • Connect smoothly
    • Verify pattern

2. Separable Equations šŸ“ˆ

Understanding Separable Equations

Equations where variables can be separated. Think of it as:

  • Grouping like terms
  • Dividing variables
  • Independent integration
  • Reverse chain rule

Solution Process

Steps for Solving

  1. Identify Form:

    • Check if dydx=f(x)g(y)\frac{dy}{dx} = f(x)g(y)
    • Variables must separate
    • No mixed terms
    • Clear denominators
  2. Separate Variables:

    • Move y terms to one side
    • Move x terms to other side
    • Write in differential form
    • Check domain
  3. Integrate Both Sides:

    • Use standard integrals
    • Watch for substitutions
    • Include constants
    • Check signs
  4. Solve for y:

    • Isolate y variable
    • Use algebra
    • Consider domain
    • Verify solution

Example Walkthrough

Solve dydx=xy\frac{dy}{dx} = xy

  1. Separate:
    • dyy=xdx\frac{dy}{y} = xdx
  2. Integrate:
    • lnā”āˆ£yāˆ£=x22+C\ln|y| = \frac{x^2}{2} + C
  3. Solve:
    • y=Ā±ex2/2+Cy = Ā±e^{x^2/2 + C}
    • y=Cex2/2y = Ce^{x^2/2}

3. Logistic Growth šŸ“Š

Understanding Logistic Growth

Models bounded growth. Think of it as:

  • Limited population growth
  • S-shaped curve
  • Carrying capacity model
  • Restricted exponential growth

Standard Form

dydt=ky(1āˆ’yM)\frac{dy}{dt} = ky(1-\frac{y}{M})

Components

  1. Growth Rate (k):

    • Initial growth speed
    • Positive constant
    • Affects steepness
    • Time scaling
  2. Carrying Capacity (M):

    • Maximum value
    • Horizontal asymptote
    • Limiting factor
    • Final equilibrium

Solution Process

  1. Set Up Equation:

    • Identify k and M
    • Write in standard form
    • Check initial conditions
    • Note constraints
  2. Separate Variables:

    • Partial fractions
    • Split terms
    • Integrate both sides
    • Solve for y
  3. Final Form:

    • y=M1+Ceāˆ’kty = \frac{M}{1 + Ce^{-kt}}
    • C from initial condition
    • Verify solution
    • Check behavior

Example Walkthrough

Population with k = 0.5, M = 1000, Pā‚€ = 100

  1. Write equation:
    • dPdt=0.5P(1āˆ’P1000)\frac{dP}{dt} = 0.5P(1-\frac{P}{1000})
  2. Use formula:
    • P=10001+Ceāˆ’0.5tP = \frac{1000}{1 + Ce^{-0.5t}}
  3. Find C:
    • Use P(0) = 100
    • Solve for C = 9

4. Euler's Method šŸ”„

Understanding Euler's Method

Numerical approximation technique. Think of it as:

  • Step-by-step approximation
  • Tangent line walking
  • Numerical integration
  • Local linear approximation

Formula

yn+1=yn+f(xn,yn)Ī”xy_{n+1} = y_n + f(x_n,y_n)\Delta x

Implementation Process

  1. Set Up:

    • Choose Ī”x
    • List initial values
    • Create table
    • Plan steps
  2. Calculate Steps:

    • Find slope
    • Use formula
    • Record values
    • Continue pattern
  3. Analyze Error:

    • Smaller Ī”x = better
    • Accumulating error
    • Compare to actual
    • Consider improvements

Example Walkthrough

Use Euler's method for dydx=x+y\frac{dy}{dx} = x + y, y(0) = 1, Ī”x = 0.2

  1. Create table:
    • xā‚€ = 0, yā‚€ = 1
  2. First step:
    • f(0,1) = 0 + 1 = 1
    • yā‚ = 1 + 1(0.2) = 1.2
  3. Continue:
    • xā‚ = 0.2, yā‚ = 1.2
    • f(0.2,1.2) = 1.4
    • yā‚‚ = 1.2 + 1.4(0.2)

5. Applications šŸŽÆ

Types of Applications

  1. Population Growth:

    • Exponential
    • Logistic
    • Predator-prey
    • Competition
  2. Decay Problems:

    • Radioactive decay
    • Temperature
    • Half-life
    • Cooling
  3. Financial Models:

    • Compound interest
    • Investment growth
    • Payment schedules
    • Market models

Example Walkthrough

Newton's Law of Cooling: T(0) = 100Ā°, room 70Ā°

  1. Write equation:
    • dTdt=k(Tāˆ’70)\frac{dT}{dt} = k(T-70)
  2. Solve:
    • T=70+CektT = 70 + Ce^{kt}
  3. Use initial condition:
    • 100 = 70 + C
    • C = 30

šŸ“ AP-Style Examples

Example 1: Slope Fields

Given dydx=x2āˆ’y\frac{dy}{dx} = x^2 - y, sketch slope field and solution curve through (0,1)

Solution:

  1. Create slope field:

    • Calculate slopes at key points
    • Draw segments carefully
    • Note equilibrium curve y = xĀ²
    • Show solution direction
  2. Solution curve:

    • Start at (0,1)
    • Follow slope pattern
    • Note curve approaches y = xĀ²
    • Show decreasing initially

Example 2: Euler's Method

Use two steps of Euler's method to approximate y(0.4) for dydx=x+y\frac{dy}{dx} = x + y, y(0) = 1, Ī”x = 0.2

Solution:

  1. First step:

    • yā‚ = 1 + (0 + 1)(0.2)
    • yā‚ = 1.2 at x = 0.2
  2. Second step:

    • yā‚‚ = 1.2 + (0.2 + 1.2)(0.2)
    • yā‚‚ = 1.48 at x = 0.4

Example 3: Logistic Growth

A population follows dPdt=0.1P(1āˆ’P500)\frac{dP}{dt} = 0.1P(1-\frac{P}{500}) with P(0) = 50. Find P(10).

Solution:

  1. Identify:

    • k = 0.1
    • M = 500
    • Pā‚€ = 50
  2. Use formula:

    • P=5001+9eāˆ’0.1tP = \frac{500}{1 + 9e^{-0.1t}}
    • Substitute t = 10
    • P(10) ā‰ˆ 187.8

šŸ’” Success Strategies

1. Equation Classification

  • Check for separable form first
  • Look for linear patterns
  • Identify growth/decay type
  • Consider special cases

2. Solution Process

  • Draw slope field first
  • Use Euler's for approximation
  • Solve analytically when possible
  • Verify with initial conditions

3. Common Mistakes

  1. Slope Fields:

    • Wrong slope direction
    • Inconsistent segment length
    • Missing key points
    • Incorrect equilibrium lines
  2. Euler's Method:

    • Wrong step size
    • Calculation errors
    • Not showing work
    • Skipping intermediate values
  3. Analytical Solutions:

    • Incorrect separation
    • Missing absolute value
    • Wrong integration
    • Forgetting +C

šŸ” AP Exam Focus

Free Response Tips

  1. Slope Fields:

    • Show clear segments
    • Consistent length
    • Correct direction
    • Solution curves match field
  2. Euler's Method:

    • Organize in table
    • Show all calculations
    • Round appropriately
    • Include units
  3. Analytical Solutions:

    • Show separation clearly
    • Include all steps
    • Verify initial conditions
    • Check final answer

Multiple Choice Strategy

  1. Quick Checks:

    • Direction field pattern
    • Solution behavior
    • Initial condition match
    • Long-term behavior
  2. Common Traps:

    • Sign errors
    • Missing factors
    • Wrong method choice
    • Incomplete solutions

šŸ“Š Quick Reference

Equation Types

  1. Separable: dydx=f(x)g(y)\frac{dy}{dx} = f(x)g(y)
  2. Linear: dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x)
  3. Logistic: dydt=ky(1āˆ’yM)\frac{dy}{dt} = ky(1-\frac{y}{M})

Key Methods

  1. Separation:

    • āˆ«dyg(y)=āˆ«f(x)dx\int \frac{dy}{g(y)} = \int f(x)dx
    • Solve for y
    • Use initial conditions
  2. Euler's:

    • yn+1=yn+f(xn,yn)Ī”xy_{n+1} = y_n + f(x_n,y_n)\Delta x
    • Table format
    • Multiple steps
  3. Slope Fields:

    • Grid points
    • Short segments
    • Consistent length
    • Show pattern

Important Solutions

  1. Exponential Growth/Decay:

    • y=Cekty = Ce^{kt}
    • Unrestricted growth
    • Proportional change
  2. Logistic Growth:

    • y=M1+Ceāˆ’kty = \frac{M}{1 + Ce^{-kt}}
    • Limited growth
    • S-shaped curve
  3. Linear:

    • Use integrating factor
    • Ī¼(x)=eāˆ«P(x)dxĪ¼(x) = e^{\int P(x)dx}
    • Multiply through

šŸ’” Pro Tip: When in doubt, start with a slope field - it gives you the big picture of solution behavior!

Ā© 2025 All rights reservedBuilt with Flowershow Cloud

Built with LogoFlowershow Cloud